Lesson 16. Linear Programs in Canonical Form

0 Warm up

Example 1.

Let
$$A = \begin{pmatrix} 1 & 9 & 8 \\ 5 & 2 & 3 \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Then $A\mathbf{x} =$

1 Canonical form

• LP in **canonical form** with decision variables x_1, \ldots, x_n :

minimize / maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad \text{for } i \in \{1, \dots, m\}$$

$$x_j \ge 0 \quad \text{for } j \in \{1, \dots, n\}$$

• In vector-matrix notation with decision variable vector $\mathbf{x} = (x_1, \dots, x_n)$:

minimize / maximize
$$\mathbf{c}^{\mathsf{T}} \mathbf{x}$$

subject to $A\mathbf{x} = \mathbf{b}$ (CF)
 $\mathbf{x} \ge \mathbf{0}$

• A has *m* rows and *n* columns, **b** has *m* components, and **c** and **x** each have *n* components

• We typically assume that $m \le n$, and rank(A) = m

Example 2. Identify **x**, **c**, *A*, and **b** in the following canonical form LP:

maximize 3x + 4y - zsubject to 2x - 3y + z = 107x + 2y - 8z = 5 $x \ge 0, y \ge 0, z \ge 0$

2 Converting any LP to an equivalent canonical form LP

- Inequalities → equalities
 - Slack and surplus variables "consume the difference" between the LHS and RHS
 - If constraint *i* is a \leq -constraint, add a slack variable s_i :

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \qquad \Rightarrow \qquad \qquad$$

• If constraint *i* is a \geq -constraint, subtract a surplus variable s_i :

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \qquad \Rightarrow \qquad$$

- Nonpositive variables → nonnegative variables
 - If $x_j \le 0$, then introduce a new variable x'_j and substitute $x_j = -x'_j$ everywhere in particular:
- Unrestricted ("free") variables → nonnegative variables
 - If x_j is unrestricted in sign, introduce 2 new nonnegative variables x_j^+ , x_j^-
 - Substitute $x_j = x_j^+ x_j^-$ everywhere
 - Why does this work?
 - ♦ Any real number can be expressed as the difference of two nonnegative numbers

Example 3. Convert the following LPs to canonical form.

maximize	3x + 8y	minimize	$5x_1 - 2x_2 + 9x_3$
subject to	$x + 4y \le 20$	subject to	$3x_1 + x_2 + 4x_3 = 8$
	$x + y \ge 9$		$2x_1 + 7x_2 - 6x_3 \le 4$
	$x \ge 0, y$ free		$x_1 \le 0, x_2 \ge 0, x_3 \ge 0$

3 Basic solutions in canonical form LPs

- Recall: a solution **x** of an LP with *n* decision variables is a **basic solution** if
 - (a) it satisfies all equality constraints
 - (b) at least n constraints are active at \mathbf{x} and are linearly independent
- The solution **x** is a **basic feasible solution (BFS)** if it is a basic solution and satisfies all constraints of the LP
- What do basic solutions in canonical form LPs look like?

3.1 Example

• Consider the following canonical form LP:

maximize	3x + 8y		
subject to	$x + 4y + s_1$	= 20	(1)
	$x + y + s_2$	= 9	(2)
	$2x + 3y + s_3$	= 20	(3)
	x	≥ 0	(4)
	у	≥ 0	(5)
	<i>s</i> ₁	≥ 0	(6)
	<i>s</i> ₂	≥ 0	(7)
	\$3	≥ 0	(8)

• Identify the matrix *A* and the vectors **c**, **x**, and **b** in the above canonical form LP.

• Suppose **x** is a basic solution

• How many linearly independent constraints must be active at x ?				
• How many of these must be equality constraints?				
 How many of these must be nonnegativity bounds? 				

- Let's compute the basic solution $\mathbf{x} = (x, y, s_1, s_2, s_3)$ associated with (1), (2), (3), (6), and (8)
 - It turns out that the constraints (1), (2), (3), (6), and (8) are linearly independent
 - Since the basic solution is active at the nonnegativity bounds (6) and (8),
 - The other variables, x, y, and s_2 are potentially nonzero
 - Substituting $s_1 = 0$ and $s_3 = 0$ into the other constraints (1), (2), and (3), we get

$$\begin{array}{l} x + 4y + (0) &= 20 \\ x + y &+ s_2 &= 9 \\ 2x + 3y &+ (0) &= 20 \end{array}$$
 (*)

• Let $\mathbf{x}_B = (x, y, s_2)$ and *B* be the submatrix of *A* consisting of columns corresponding to *x*, *y*, and *s*₂:

$$B = \begin{pmatrix} 1 & 4 & 0 \\ 1 & 1 & 1 \\ 2 & 3 & 0 \end{pmatrix}$$

• Note that (*) can be written as

$$B\mathbf{x}_B = \mathbf{b} \tag{(**)}$$

• The columns of *B* linearly independent. Why?

 $\circ~(\star\star)$ has a unique solution. Why?

• It turns out that the solution to (**) is $\mathbf{x}_B = (4, 4, 1)$

• Put it together: the basic solution $\mathbf{x} = (x, y, s_1, s_2, s_3)$ associated with (1), (2), (3), (6), and (8) is

4 Generalizing the example

- Now let's generalize what happened in the example above
- Consider the generic canonical form LP (CF)
 - Let n = number of decision variables
 - Let m = number of equality constraints
 - In other words, *A* has *m* rows and *n* columns
 - Assume $m \le n$ and rank(A) = m
- Suppose **x** is a basic solution
 - How many linearly independent constraints must be active at x?

• Since **x** satisfies A**x** = **b**, how many nonnegativity bounds must be active?

• Generalizing our observations from the example, we have the following theorem:

Theorem 1. If x is a basic solution of a canonical form LP, then there exists *m* basic variables of x such that

- (a) the columns of *A* corresponding to these *m* variables are linearly independent;
- (b) the other n m nonbasic variables are equal to 0.

The set of basic variables is referred to as the **basis** of **x**.

- Let's check our understanding of this theorem with the example
 - Back in the example, n = and m =
 - Recall that $\mathbf{x} = (x, y, s_1, s_2, s_3) = (4, 4, 0, 1, 0)$ is a basic solution
 - Which variables of \mathbf{x} correspond to m LI columns of A?
 - Which n m variables of **x** are equal to 0?
 - The basic variables of \mathbf{x} are
 - The nonbasic variables of **x** are
 - The basis of \mathbf{x} is
- Let *B* be the submatrix of *A* consisting of columns corresponding to the *m* basic variables
- Let **x**_{*B*} be the vector of these *m* basic variables
- Since the columns of *B* are linearly independent, the system $B\mathbf{x}_B = \mathbf{b}$ has a unique solution
 - This matches what we saw in (**) in the above example
- The *m* basic variables are potentially nonzero, while the other n m nonbasic variables are forced to be zero