Lesson 16. Linear Programs in Canonical Form

0 Warm up

Example 1.

Let $A=\left(\begin{array}{lll}1 & 9 & 8 \\ 5 & 2 & 3\end{array}\right)$ and $\mathbf{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) . \quad$ Then $A \mathbf{x}=$

1 Canonical form

- LP in canonical form with decision variables x_{1}, \ldots, x_{n} :

$$
\begin{array}{rll}
\operatorname{minimize} / \text { maximize } & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} & \text { for } i \in\{1, \ldots, m\} \\
& x_{j} \geq 0 & \text { for } j \in\{1, \ldots, n\}
\end{array}
$$

- In vector-matrix notation with decision variable vector $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$:

$$
\begin{align*}
\text { minimize } / \text { maximize } & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to } & A \mathbf{x}=\mathbf{b} \tag{CF}\\
& \mathbf{x} \geq \mathbf{0}
\end{align*}
$$

- A has m rows and n columns, \mathbf{b} has m components, and \mathbf{c} and \mathbf{x} each have n components
- We typically assume that $m \leq n$, and $\operatorname{rank}(A)=m$

Example 2. Identify $\mathbf{x}, \mathbf{c}, A$, and \mathbf{b} in the following canonical form LP:

$$
\begin{array}{ll}
\text { maximize } & 3 x+4 y-z \\
\text { subject to } & 2 x-3 y+z=10 \\
& 7 x+2 y-8 z=5 \\
& x \geq 0, y \geq 0, z \geq 0
\end{array}
$$

- A canonical form LP always has at least 1 extreme point (if it has a feasible solution)
- Intuition: if solutions in the feasible region must satisfy $\mathbf{x} \geq \mathbf{0}$, then the feasible region must be "pointed"

2 Converting any LP to an equivalent canonical form LP

- Inequalities \rightarrow equalities
- Slack and surplus variables "consume the difference" between the LHS and RHS
- If constraint i is a \leq-constraint, add a slack variable s_{i} :

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \Rightarrow
$$

\square

- If constraint i is a \geq-constraint, subtract a surplus variable s_{i} :

$$
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \quad \Rightarrow \quad \square
$$

- Nonpositive variables \rightarrow nonnegative variables
- If $x_{j} \leq 0$, then introduce a new variable x_{j}^{\prime} and substitute $x_{j}=-x_{j}^{\prime}$ everywhere - in particular:
- Unrestricted ("free") variables \rightarrow nonnegative variables
- If x_{j} is unrestricted in sign, introduce 2 new nonnegative variables x_{j}^{+}, x_{j}^{-}
- Substitute $x_{j}=x_{j}^{+}-x_{j}^{-}$everywhere
- Why does this work?
\diamond Any real number can be expressed as the difference of two nonnegative numbers

Example 3. Convert the following LPs to canonical form.

$\operatorname{maximize}$	$3 x+8 y$
subject to	$x+4 y \leq 20$
	$x+y \geq 9$
	$x \geq 0, y$ free

3 Basic solutions in canonical form LPs

- Recall: a solution \mathbf{x} of an LP with n decision variables is a basic solution if
(a) it satisfies all equality constraints
(b) at least n constraints are active at \mathbf{x} and are linearly independent
- The solution \mathbf{x} is a basic feasible solution (BFS) if it is a basic solution and satisfies all constraints of the LP
- What do basic solutions in canonical form LPs look like?

3.1 Example

- Consider the following canonical form LP:

$\operatorname{maximize} \quad 3 x+8 y$			
subject to $\quad x+4 y+s_{1}$			
$x+y+s_{2}$		$=9$	
$2 x+3 y$	$+s_{3}$	$=20$	
x		≥ 0	
y		≥ 0	
s_{1}		≥ 0	
s_{2}	≥ 0		
		s_{3}	≥ 0

- Identify the matrix A and the vectors \mathbf{c}, \mathbf{x}, and \mathbf{b} in the above canonical form LP.
- Suppose \mathbf{x} is a basic solution
- How many linearly independent constraints must be active at \mathbf{x} ?
- How many of these must be equality constraints?
- How many of these must be nonnegativity bounds?
- Let's compute the basic solution $\mathbf{x}=\left(x, y, s_{1}, s_{2}, s_{3}\right)$ associated with (1), (2), (3), (6), and (8)
- It turns out that the constraints (1), (2), (3), (6), and (8) are linearly independent
- Since the basic solution is active at the nonnegativity bounds (6) and (8),
- The other variables, x, y, and s_{2} are potentially nonzero
- Substituting $s_{1}=0$ and $s_{3}=0$ into the other constraints (1), (2), and (3), we get

$$
\begin{align*}
x+4 y+(0) & =20 \\
x+y+s_{2} & =9 \tag{*}\\
2 x+3 y+(0) & =20
\end{align*}
$$

- Let $\mathbf{x}_{B}=\left(x, y, s_{2}\right)$ and B be the submatrix of A consisting of columns corresponding to x, y, and s_{2} :

$$
B=\left(\begin{array}{lll}
1 & 4 & 0 \\
1 & 1 & 1 \\
2 & 3 & 0
\end{array}\right)
$$

- Note that (*) can be written as

$$
\begin{equation*}
B \mathbf{x}_{B}=\mathbf{b} \tag{**}
\end{equation*}
$$

- The columns of B linearly independent. Why?
- ($* *)$ has a unique solution. Why?
- It turns out that the solution to $(* *)$ is $\mathbf{x}_{B}=(4,4,1)$
\circ Put it together: the basic solution $\mathbf{x}=\left(x, y, s_{1}, s_{2}, s_{3}\right)$ associated with (1), (2), (3), (6), and (8) is

4 Generalizing the example

- Now let's generalize what happened in the example above
- Consider the generic canonical form LP (CF)
- Let $n=$ number of decision variables
- Let $m=$ number of equality constraints
- In other words, A has m rows and n columns
- Assume $m \leq n$ and $\operatorname{rank}(A)=m$
- Suppose \mathbf{x} is a basic solution
- How many linearly independent constraints must be active at \mathbf{x} ?
- Since \mathbf{x} satisfies $A \mathbf{x}=\mathbf{b}$, how many nonnegativity bounds must be active?
- Generalizing our observations from the example, we have the following theorem:

Theorem 1. If \mathbf{x} is a basic solution of a canonical form LP, then there exists m basic variables of \mathbf{x} such that
(a) the columns of A corresponding to these m variables are linearly independent;
(b) the other $n-m$ nonbasic variables are equal to 0 .

The set of basic variables is referred to as the basis of \mathbf{x}.

- Let's check our understanding of this theorem with the example
- Back in the example, $n=\square$ and $m=\square$
- Recall that $\mathbf{x}=\left(x, y, s_{1}, s_{2}, s_{3}\right)=(4,4,0,1,0)$ is a basic solution
- Which variables of \mathbf{x} correspond to m LI columns of A ?
- Which $n-m$ variables of \mathbf{x} are equal to 0 ?
- The basic variables of \mathbf{x} are
- The nonbasic variables of \mathbf{x} are
- The basis of \mathbf{x} is
- Let B be the submatrix of A consisting of columns corresponding to the m basic variables
- Let \mathbf{x}_{B} be the vector of these m basic variables
- Since the columns of B are linearly independent, the system $B \mathbf{x}_{B}=\mathbf{b}$ has a unique solution
- This matches what we saw in $(* *)$ in the above example
- The m basic variables are potentially nonzero, while the other $n-m$ nonbasic variables are forced to be zero

