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Lesson 16. Linear Programs in Canonical Form

0 Warm up
Example 1.

Let A = (
1 9 8
5 2 3) and x =

⎛
⎜
⎝

x1
x2
x3

⎞
⎟
⎠
. _en Ax = .

1 Canonical form

● LP in canonical form with decision variables x1, . . . , xn:

minimize / maximize
n
∑
j=1
c jx j

subject to
n
∑
j=1
ai jx j = bi for i ∈ {1, . . . ,m}

x j ≥ 0 for j ∈ {1, . . . , n}

● In vector-matrix notation with decision variable vector x = (x1, . . . , xn):

minimize / maximize c⊺x
subject to Ax = b

x ≥ 0
(CF)

○ A has m rows and n columns, b has m components, and c and x each have n components

● We typically assume that m ≤ n, and rank(A) = m

Example 2. Identify x, c, A, and b in the following canonical form LP:

maximize 3x + 4y − z
subject to 2x − 3y + z = 10

7x + 2y − 8z = 5
x ≥ 0, y ≥ 0, z ≥ 0
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● A canonical form LP always has at least 1 extreme point
(if it has a feasible solution)

○ Intuition: if solutions in the feasible region must satisfy
x ≥ 0, then the feasible region must be “pointed”

x1

x2

2 Converting any LP to an equivalent canonical form LP

● Inequalities→ equalities

○ Slack and surplus variables “consume the diòerence” between the LHS and RHS
○ If constraint i is a ≤-constraint, add a slack variable si :

n
∑
j=1
ai jx j ≤ bi ⇒

○ If constraint i is a ≥-constraint, subtract a surplus variable si :

n
∑
j=1
ai jx j ≥ bi ⇒

● Nonpositive variables→ nonnegative variables

○ If x j ≤ 0, then introduce a new variable x′j and substitute x j = −x′j everywhere – in particular:

● Unrestricted (“free”) variables→ nonnegative variables

○ If x j is unrestricted in sign, introduce 2 new nonnegative variables x+j , x−j
○ Substitute x j = x+j − x−j everywhere
○ Why does this work?

◇ Any real number can be expressed as the diòerence of two nonnegative numbers
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Example 3. Convert the following LPs to canonical form.

maximize 3x + 8y
subject to x + 4y ≤ 20

x + y ≥ 9
x ≥ 0, y free

minimize 5x1 − 2x2 + 9x3

subject to 3x1 + x2 + 4x3 = 8
2x1 + 7x2 − 6x3 ≤ 4
x1 ≤ 0, x2 ≥ 0, x3 ≥ 0
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3 Basic solutions in canonical form LPs

● Recall: a solution x of an LP with n decision variables is a basic solution if

(a) it satisûes all equality constraints
(b) at least n constraints are active at x and are linearly independent

● _e solution x is a basic feasible solution (BFS) if it is a basic solution and satisûes all constraints of the LP

● What do basic solutions in canonical form LPs look like?

3.1 Example

● Consider the following canonical form LP:

maximize 3x + 8y
subject to x + 4y + s1 = 20 (1)

x + y + s2 = 9 (2)
2x + 3y + s3 = 20 (3)
x ≥ 0 (4)

y ≥ 0 (5)
s1 ≥ 0 (6)

s2 ≥ 0 (7)
s3 ≥ 0 (8)

● Identify thematrix A and the vectors c, x, and b in the above canonical form LP.

● Suppose x is a basic solution

○ How many linearly independent constraints must be active at x?

○ How many of thesemust be equality constraints?

○ How many of thesemust be nonnegativity bounds?
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● Let’s compute the basic solution x = (x , y, s1, s2, s3) associated with (1), (2), (3), (6), and (8)

○ It turns out that the constraints (1), (2), (3), (6), and (8) are linearly independent
○ Since the basic solution is active at the nonnegativity bounds (6) and (8),

○ _e other variables, x, y, and s2 are potentially nonzero
○ Substituting s1 = 0 and s3 = 0 into the other constraints (1), (2), and (3), we get

x + 4y + (0) = 20
x + y + s2 = 9

2x + 3y + (0) = 20
(∗)

○ Let xB = (x , y, s2) and B be the submatrix of A consisting of columns corresponding to x, y, and s2:

B =
⎛
⎜
⎝

1 4 0
1 1 1
2 3 0

⎞
⎟
⎠

○ Note that (∗) can be written as
BxB = b (∗∗)

○ _e columns of B linearly independent. Why?

○ (∗∗) has a unique solution. Why?

○ It turns out that the solution to (∗∗) is xB = (4, 4, 1)
○ Put it together: the basic solution x = (x , y, s1, s2, s3) associated with (1), (2), (3), (6), and (8) is
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4 Generalizing the example

● Now let’s generalize what happened in the example above

● Consider the generic canonical form LP (CF)

○ Let n = number of decision variables
○ Let m = number of equality constraints
○ In other words, A has m rows and n columns
○ Assume m ≤ n and rank(A) = m

● Suppose x is a basic solution

○ How many linearly independent constraints must be active at x?

○ Since x satisûes Ax = b, how many nonnegativity bounds must be active?

● Generalizing our observations from the example, we have the following theorem:

_eorem 1. If x is a basic solution of a canonical form LP, then there exists m basic variables of x such that

(a) the columns of A corresponding to these m variables are linearly independent;
(b) the other n −m nonbasic variables are equal to 0.

_e set of basic variables is referred to as the basis of x.

● Let’s check our understanding of this theorem with the example

○ Back in the example, n = and m =

○ Recall that x = (x , y, s1, s2, s3) = (4, 4, 0, 1, 0) is a basic solution

○ Which variables of x correspond to m LI columns of A?

○ Which n −m variables of x are equal to 0?

○ _e basic variables of x are

○ _e nonbasic variables of x are

○ _e basis of x is

● Let B be the submatrix of A consisting of columns corresponding to the m basic variables

● Let xB be the vector of these m basic variables

● Since the columns of B are linearly independent, the system BxB = b has a unique solution

○ _is matches what we saw in (∗∗) in the above example

● _e m basic variables are potentially nonzero, while the other n −m nonbasic variables are forced to be zero
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